Vector Optimized Library of Kernels  3.0.0
Architecture-tuned implementations of math kernels
volk_32fc_x2_conjugate_dot_prod_32fc.h
Go to the documentation of this file.
1 /* -*- c++ -*- */
2 /*
3  * Copyright 2012, 2014 Free Software Foundation, Inc.
4  *
5  * This file is part of VOLK
6  *
7  * SPDX-License-Identifier: LGPL-3.0-or-later
8  */
9 
61 #ifndef INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_u_H
62 #define INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_u_H
63 
64 
65 #include <volk/volk_complex.h>
66 
67 
68 #ifdef LV_HAVE_GENERIC
69 
71  const lv_32fc_t* input,
72  const lv_32fc_t* taps,
73  unsigned int num_points)
74 {
75  lv_32fc_t res = lv_cmake(0.f, 0.f);
76  for (unsigned int i = 0; i < num_points; ++i) {
77  res += (*input++) * lv_conj((*taps++));
78  }
79  *result = res;
80 }
81 
82 #endif /*LV_HAVE_GENERIC*/
83 
84 #ifdef LV_HAVE_GENERIC
85 
87  const lv_32fc_t* input,
88  const lv_32fc_t* taps,
89  unsigned int num_points)
90 {
91 
92  const unsigned int num_bytes = num_points * 8;
93 
94  float* res = (float*)result;
95  float* in = (float*)input;
96  float* tp = (float*)taps;
97  unsigned int n_2_ccomplex_blocks = num_bytes >> 4;
98 
99  float sum0[2] = { 0, 0 };
100  float sum1[2] = { 0, 0 };
101  unsigned int i = 0;
102 
103  for (i = 0; i < n_2_ccomplex_blocks; ++i) {
104  sum0[0] += in[0] * tp[0] + in[1] * tp[1];
105  sum0[1] += (-in[0] * tp[1]) + in[1] * tp[0];
106  sum1[0] += in[2] * tp[2] + in[3] * tp[3];
107  sum1[1] += (-in[2] * tp[3]) + in[3] * tp[2];
108 
109  in += 4;
110  tp += 4;
111  }
112 
113  res[0] = sum0[0] + sum1[0];
114  res[1] = sum0[1] + sum1[1];
115 
116  if (num_bytes >> 3 & 1) {
117  *result += input[(num_bytes >> 3) - 1] * lv_conj(taps[(num_bytes >> 3) - 1]);
118  }
119 }
120 
121 #endif /*LV_HAVE_GENERIC*/
122 
123 #ifdef LV_HAVE_AVX
124 
125 #include <immintrin.h>
126 
128  const lv_32fc_t* input,
129  const lv_32fc_t* taps,
130  unsigned int num_points)
131 {
132  // Partial sums for indices i, i+1, i+2 and i+3.
133  __m256 sum_a_mult_b_real = _mm256_setzero_ps();
134  __m256 sum_a_mult_b_imag = _mm256_setzero_ps();
135 
136  for (long unsigned i = 0; i < (num_points & ~3u); i += 4) {
137  /* Four complex elements a time are processed.
138  * (ar + j⋅ai)*conj(br + j⋅bi) =
139  * ar⋅br + ai⋅bi + j⋅(ai⋅br − ar⋅bi)
140  */
141 
142  /* Load input and taps, split and duplicate real und imaginary parts of taps.
143  * a: | ai,i+3 | ar,i+3 | … | ai,i+1 | ar,i+1 | ai,i+0 | ar,i+0 |
144  * b: | bi,i+3 | br,i+3 | … | bi,i+1 | br,i+1 | bi,i+0 | br,i+0 |
145  * b_real: | br,i+3 | br,i+3 | … | br,i+1 | br,i+1 | br,i+0 | br,i+0 |
146  * b_imag: | bi,i+3 | bi,i+3 | … | bi,i+1 | bi,i+1 | bi,i+0 | bi,i+0 |
147  */
148  __m256 a = _mm256_loadu_ps((const float*)&input[i]);
149  __m256 b = _mm256_loadu_ps((const float*)&taps[i]);
150  __m256 b_real = _mm256_moveldup_ps(b);
151  __m256 b_imag = _mm256_movehdup_ps(b);
152 
153  // Add | ai⋅br,i+3 | ar⋅br,i+3 | … | ai⋅br,i+0 | ar⋅br,i+0 | to partial sum.
154  sum_a_mult_b_real = _mm256_add_ps(sum_a_mult_b_real, _mm256_mul_ps(a, b_real));
155  // Add | ai⋅bi,i+3 | −ar⋅bi,i+3 | … | ai⋅bi,i+0 | −ar⋅bi,i+0 | to partial sum.
156  sum_a_mult_b_imag = _mm256_addsub_ps(sum_a_mult_b_imag, _mm256_mul_ps(a, b_imag));
157  }
158 
159  // Swap position of −ar⋅bi and ai⋅bi.
160  sum_a_mult_b_imag = _mm256_permute_ps(sum_a_mult_b_imag, _MM_SHUFFLE(2, 3, 0, 1));
161  // | ai⋅br + ai⋅bi | ai⋅br − ar⋅bi |, sum contains four such partial sums.
162  __m256 sum = _mm256_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
163  /* Sum the four partial sums: Add high half of vector sum to the low one, i.e.
164  * s1 + s3 and s0 + s2 …
165  */
166  sum = _mm256_add_ps(sum, _mm256_permute2f128_ps(sum, sum, 0x01));
167  // … and now (s0 + s2) + (s1 + s3)
168  sum = _mm256_add_ps(sum, _mm256_permute_ps(sum, _MM_SHUFFLE(1, 0, 3, 2)));
169  // Store result.
170  __m128 lower = _mm256_extractf128_ps(sum, 0);
171  _mm_storel_pi((__m64*)result, lower);
172 
173  // Handle the last elements if num_points mod 4 is bigger than 0.
174  for (long unsigned i = num_points & ~3u; i < num_points; ++i) {
175  *result += lv_cmake(lv_creal(input[i]) * lv_creal(taps[i]) +
176  lv_cimag(input[i]) * lv_cimag(taps[i]),
177  lv_cimag(input[i]) * lv_creal(taps[i]) -
178  lv_creal(input[i]) * lv_cimag(taps[i]));
179  }
180 }
181 
182 #endif /* LV_HAVE_AVX */
183 
184 #ifdef LV_HAVE_SSE3
185 
186 #include <pmmintrin.h>
187 #include <xmmintrin.h>
188 
190  const lv_32fc_t* input,
191  const lv_32fc_t* taps,
192  unsigned int num_points)
193 {
194  // Partial sums for indices i and i+1.
195  __m128 sum_a_mult_b_real = _mm_setzero_ps();
196  __m128 sum_a_mult_b_imag = _mm_setzero_ps();
197 
198  for (long unsigned i = 0; i < (num_points & ~1u); i += 2) {
199  /* Two complex elements a time are processed.
200  * (ar + j⋅ai)*conj(br + j⋅bi) =
201  * ar⋅br + ai⋅bi + j⋅(ai⋅br − ar⋅bi)
202  */
203 
204  /* Load input and taps, split and duplicate real und imaginary parts of taps.
205  * a: | ai,i+1 | ar,i+1 | ai,i+0 | ar,i+0 |
206  * b: | bi,i+1 | br,i+1 | bi,i+0 | br,i+0 |
207  * b_real: | br,i+1 | br,i+1 | br,i+0 | br,i+0 |
208  * b_imag: | bi,i+1 | bi,i+1 | bi,i+0 | bi,i+0 |
209  */
210  __m128 a = _mm_loadu_ps((const float*)&input[i]);
211  __m128 b = _mm_loadu_ps((const float*)&taps[i]);
212  __m128 b_real = _mm_moveldup_ps(b);
213  __m128 b_imag = _mm_movehdup_ps(b);
214 
215  // Add | ai⋅br,i+1 | ar⋅br,i+1 | ai⋅br,i+0 | ar⋅br,i+0 | to partial sum.
216  sum_a_mult_b_real = _mm_add_ps(sum_a_mult_b_real, _mm_mul_ps(a, b_real));
217  // Add | ai⋅bi,i+1 | −ar⋅bi,i+1 | ai⋅bi,i+0 | −ar⋅bi,i+0 | to partial sum.
218  sum_a_mult_b_imag = _mm_addsub_ps(sum_a_mult_b_imag, _mm_mul_ps(a, b_imag));
219  }
220 
221  // Swap position of −ar⋅bi and ai⋅bi.
222  sum_a_mult_b_imag =
223  _mm_shuffle_ps(sum_a_mult_b_imag, sum_a_mult_b_imag, _MM_SHUFFLE(2, 3, 0, 1));
224  // | ai⋅br + ai⋅bi | ai⋅br − ar⋅bi |, sum contains two such partial sums.
225  __m128 sum = _mm_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
226  // Sum the two partial sums.
227  sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(1, 0, 3, 2)));
228  // Store result.
229  _mm_storel_pi((__m64*)result, sum);
230 
231  // Handle the last element if num_points mod 2 is 1.
232  if (num_points & 1u) {
233  *result += lv_cmake(
234  lv_creal(input[num_points - 1]) * lv_creal(taps[num_points - 1]) +
235  lv_cimag(input[num_points - 1]) * lv_cimag(taps[num_points - 1]),
236  lv_cimag(input[num_points - 1]) * lv_creal(taps[num_points - 1]) -
237  lv_creal(input[num_points - 1]) * lv_cimag(taps[num_points - 1]));
238  }
239 }
240 
241 #endif /*LV_HAVE_SSE3*/
242 
243 #ifdef LV_HAVE_NEON
244 #include <arm_neon.h>
246  const lv_32fc_t* input,
247  const lv_32fc_t* taps,
248  unsigned int num_points)
249 {
250 
251  unsigned int quarter_points = num_points / 4;
252  unsigned int number;
253 
254  lv_32fc_t* a_ptr = (lv_32fc_t*)taps;
255  lv_32fc_t* b_ptr = (lv_32fc_t*)input;
256  // for 2-lane vectors, 1st lane holds the real part,
257  // 2nd lane holds the imaginary part
258  float32x4x2_t a_val, b_val, accumulator;
259  float32x4x2_t tmp_imag;
260  accumulator.val[0] = vdupq_n_f32(0);
261  accumulator.val[1] = vdupq_n_f32(0);
262 
263  for (number = 0; number < quarter_points; ++number) {
264  a_val = vld2q_f32((float*)a_ptr); // a0r|a1r|a2r|a3r || a0i|a1i|a2i|a3i
265  b_val = vld2q_f32((float*)b_ptr); // b0r|b1r|b2r|b3r || b0i|b1i|b2i|b3i
266  __VOLK_PREFETCH(a_ptr + 8);
267  __VOLK_PREFETCH(b_ptr + 8);
268 
269  // do the first multiply
270  tmp_imag.val[1] = vmulq_f32(a_val.val[1], b_val.val[0]);
271  tmp_imag.val[0] = vmulq_f32(a_val.val[0], b_val.val[0]);
272 
273  // use multiply accumulate/subtract to get result
274  tmp_imag.val[1] = vmlsq_f32(tmp_imag.val[1], a_val.val[0], b_val.val[1]);
275  tmp_imag.val[0] = vmlaq_f32(tmp_imag.val[0], a_val.val[1], b_val.val[1]);
276 
277  accumulator.val[0] = vaddq_f32(accumulator.val[0], tmp_imag.val[0]);
278  accumulator.val[1] = vaddq_f32(accumulator.val[1], tmp_imag.val[1]);
279 
280  // increment pointers
281  a_ptr += 4;
282  b_ptr += 4;
283  }
284  lv_32fc_t accum_result[4];
285  vst2q_f32((float*)accum_result, accumulator);
286  *result = accum_result[0] + accum_result[1] + accum_result[2] + accum_result[3];
287 
288  // tail case
289  for (number = quarter_points * 4; number < num_points; ++number) {
290  *result += (*a_ptr++) * lv_conj(*b_ptr++);
291  }
292  *result = lv_conj(*result);
293 }
294 #endif /*LV_HAVE_NEON*/
295 
296 #endif /*INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_u_H*/
297 
298 #ifndef INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_a_H
299 #define INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_a_H
300 
301 #include <stdio.h>
302 #include <volk/volk_common.h>
303 #include <volk/volk_complex.h>
304 
305 
306 #ifdef LV_HAVE_AVX
307 #include <immintrin.h>
308 
310  const lv_32fc_t* input,
311  const lv_32fc_t* taps,
312  unsigned int num_points)
313 {
314  // Partial sums for indices i, i+1, i+2 and i+3.
315  __m256 sum_a_mult_b_real = _mm256_setzero_ps();
316  __m256 sum_a_mult_b_imag = _mm256_setzero_ps();
317 
318  for (long unsigned i = 0; i < (num_points & ~3u); i += 4) {
319  /* Four complex elements a time are processed.
320  * (ar + j⋅ai)*conj(br + j⋅bi) =
321  * ar⋅br + ai⋅bi + j⋅(ai⋅br − ar⋅bi)
322  */
323 
324  /* Load input and taps, split and duplicate real und imaginary parts of taps.
325  * a: | ai,i+3 | ar,i+3 | … | ai,i+1 | ar,i+1 | ai,i+0 | ar,i+0 |
326  * b: | bi,i+3 | br,i+3 | … | bi,i+1 | br,i+1 | bi,i+0 | br,i+0 |
327  * b_real: | br,i+3 | br,i+3 | … | br,i+1 | br,i+1 | br,i+0 | br,i+0 |
328  * b_imag: | bi,i+3 | bi,i+3 | … | bi,i+1 | bi,i+1 | bi,i+0 | bi,i+0 |
329  */
330  __m256 a = _mm256_load_ps((const float*)&input[i]);
331  __m256 b = _mm256_load_ps((const float*)&taps[i]);
332  __m256 b_real = _mm256_moveldup_ps(b);
333  __m256 b_imag = _mm256_movehdup_ps(b);
334 
335  // Add | ai⋅br,i+3 | ar⋅br,i+3 | … | ai⋅br,i+0 | ar⋅br,i+0 | to partial sum.
336  sum_a_mult_b_real = _mm256_add_ps(sum_a_mult_b_real, _mm256_mul_ps(a, b_real));
337  // Add | ai⋅bi,i+3 | −ar⋅bi,i+3 | … | ai⋅bi,i+0 | −ar⋅bi,i+0 | to partial sum.
338  sum_a_mult_b_imag = _mm256_addsub_ps(sum_a_mult_b_imag, _mm256_mul_ps(a, b_imag));
339  }
340 
341  // Swap position of −ar⋅bi and ai⋅bi.
342  sum_a_mult_b_imag = _mm256_permute_ps(sum_a_mult_b_imag, _MM_SHUFFLE(2, 3, 0, 1));
343  // | ai⋅br + ai⋅bi | ai⋅br − ar⋅bi |, sum contains four such partial sums.
344  __m256 sum = _mm256_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
345  /* Sum the four partial sums: Add high half of vector sum to the low one, i.e.
346  * s1 + s3 and s0 + s2 …
347  */
348  sum = _mm256_add_ps(sum, _mm256_permute2f128_ps(sum, sum, 0x01));
349  // … and now (s0 + s2) + (s1 + s3)
350  sum = _mm256_add_ps(sum, _mm256_permute_ps(sum, _MM_SHUFFLE(1, 0, 3, 2)));
351  // Store result.
352  __m128 lower = _mm256_extractf128_ps(sum, 0);
353  _mm_storel_pi((__m64*)result, lower);
354 
355  // Handle the last elements if num_points mod 4 is bigger than 0.
356  for (long unsigned i = num_points & ~3u; i < num_points; ++i) {
357  *result += lv_cmake(lv_creal(input[i]) * lv_creal(taps[i]) +
358  lv_cimag(input[i]) * lv_cimag(taps[i]),
359  lv_cimag(input[i]) * lv_creal(taps[i]) -
360  lv_creal(input[i]) * lv_cimag(taps[i]));
361  }
362 }
363 #endif /* LV_HAVE_AVX */
364 
365 #ifdef LV_HAVE_SSE3
366 
367 #include <pmmintrin.h>
368 #include <xmmintrin.h>
369 
371  const lv_32fc_t* input,
372  const lv_32fc_t* taps,
373  unsigned int num_points)
374 {
375  // Partial sums for indices i and i+1.
376  __m128 sum_a_mult_b_real = _mm_setzero_ps();
377  __m128 sum_a_mult_b_imag = _mm_setzero_ps();
378 
379  for (long unsigned i = 0; i < (num_points & ~1u); i += 2) {
380  /* Two complex elements a time are processed.
381  * (ar + j⋅ai)*conj(br + j⋅bi) =
382  * ar⋅br + ai⋅bi + j⋅(ai⋅br − ar⋅bi)
383  */
384 
385  /* Load input and taps, split and duplicate real und imaginary parts of taps.
386  * a: | ai,i+1 | ar,i+1 | ai,i+0 | ar,i+0 |
387  * b: | bi,i+1 | br,i+1 | bi,i+0 | br,i+0 |
388  * b_real: | br,i+1 | br,i+1 | br,i+0 | br,i+0 |
389  * b_imag: | bi,i+1 | bi,i+1 | bi,i+0 | bi,i+0 |
390  */
391  __m128 a = _mm_load_ps((const float*)&input[i]);
392  __m128 b = _mm_load_ps((const float*)&taps[i]);
393  __m128 b_real = _mm_moveldup_ps(b);
394  __m128 b_imag = _mm_movehdup_ps(b);
395 
396  // Add | ai⋅br,i+1 | ar⋅br,i+1 | ai⋅br,i+0 | ar⋅br,i+0 | to partial sum.
397  sum_a_mult_b_real = _mm_add_ps(sum_a_mult_b_real, _mm_mul_ps(a, b_real));
398  // Add | ai⋅bi,i+1 | −ar⋅bi,i+1 | ai⋅bi,i+0 | −ar⋅bi,i+0 | to partial sum.
399  sum_a_mult_b_imag = _mm_addsub_ps(sum_a_mult_b_imag, _mm_mul_ps(a, b_imag));
400  }
401 
402  // Swap position of −ar⋅bi and ai⋅bi.
403  sum_a_mult_b_imag =
404  _mm_shuffle_ps(sum_a_mult_b_imag, sum_a_mult_b_imag, _MM_SHUFFLE(2, 3, 0, 1));
405  // | ai⋅br + ai⋅bi | ai⋅br − ar⋅bi |, sum contains two such partial sums.
406  __m128 sum = _mm_add_ps(sum_a_mult_b_real, sum_a_mult_b_imag);
407  // Sum the two partial sums.
408  sum = _mm_add_ps(sum, _mm_shuffle_ps(sum, sum, _MM_SHUFFLE(1, 0, 3, 2)));
409  // Store result.
410  _mm_storel_pi((__m64*)result, sum);
411 
412  // Handle the last element if num_points mod 2 is 1.
413  if (num_points & 1u) {
414  *result += lv_cmake(
415  lv_creal(input[num_points - 1]) * lv_creal(taps[num_points - 1]) +
416  lv_cimag(input[num_points - 1]) * lv_cimag(taps[num_points - 1]),
417  lv_cimag(input[num_points - 1]) * lv_creal(taps[num_points - 1]) -
418  lv_creal(input[num_points - 1]) * lv_cimag(taps[num_points - 1]));
419  }
420 }
421 
422 #endif /*LV_HAVE_SSE3*/
423 
424 
425 #ifdef LV_HAVE_GENERIC
426 
427 
429  const lv_32fc_t* input,
430  const lv_32fc_t* taps,
431  unsigned int num_points)
432 {
433 
434  const unsigned int num_bytes = num_points * 8;
435 
436  float* res = (float*)result;
437  float* in = (float*)input;
438  float* tp = (float*)taps;
439  unsigned int n_2_ccomplex_blocks = num_bytes >> 4;
440 
441  float sum0[2] = { 0, 0 };
442  float sum1[2] = { 0, 0 };
443  unsigned int i = 0;
444 
445  for (i = 0; i < n_2_ccomplex_blocks; ++i) {
446  sum0[0] += in[0] * tp[0] + in[1] * tp[1];
447  sum0[1] += (-in[0] * tp[1]) + in[1] * tp[0];
448  sum1[0] += in[2] * tp[2] + in[3] * tp[3];
449  sum1[1] += (-in[2] * tp[3]) + in[3] * tp[2];
450 
451  in += 4;
452  tp += 4;
453  }
454 
455  res[0] = sum0[0] + sum1[0];
456  res[1] = sum0[1] + sum1[1];
457 
458  if (num_bytes >> 3 & 1) {
459  *result += input[(num_bytes >> 3) - 1] * lv_conj(taps[(num_bytes >> 3) - 1]);
460  }
461 }
462 
463 #endif /*LV_HAVE_GENERIC*/
464 
465 
466 #if LV_HAVE_SSE && LV_HAVE_64
467 
468 static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_sse(lv_32fc_t* result,
469  const lv_32fc_t* input,
470  const lv_32fc_t* taps,
471  unsigned int num_points)
472 {
473 
474  const unsigned int num_bytes = num_points * 8;
475 
477  static const uint32_t conjugator[4] = {
478  0x00000000, 0x80000000, 0x00000000, 0x80000000
479  };
480 
482  "# ccomplex_conjugate_dotprod_generic (float* result, const float *input,\n\t"
483  "# const float *taps, unsigned num_bytes)\n\t"
484  "# float sum0 = 0;\n\t"
485  "# float sum1 = 0;\n\t"
486  "# float sum2 = 0;\n\t"
487  "# float sum3 = 0;\n\t"
488  "# do {\n\t"
489  "# sum0 += input[0] * taps[0] - input[1] * taps[1];\n\t"
490  "# sum1 += input[0] * taps[1] + input[1] * taps[0];\n\t"
491  "# sum2 += input[2] * taps[2] - input[3] * taps[3];\n\t"
492  "# sum3 += input[2] * taps[3] + input[3] * taps[2];\n\t"
493  "# input += 4;\n\t"
494  "# taps += 4; \n\t"
495  "# } while (--n_2_ccomplex_blocks != 0);\n\t"
496  "# result[0] = sum0 + sum2;\n\t"
497  "# result[1] = sum1 + sum3;\n\t"
498  "# TODO: prefetch and better scheduling\n\t"
499  " xor %%r9, %%r9\n\t"
500  " xor %%r10, %%r10\n\t"
501  " movq %[conjugator], %%r9\n\t"
502  " movq %%rcx, %%rax\n\t"
503  " movaps 0(%%r9), %%xmm8\n\t"
504  " movq %%rcx, %%r8\n\t"
505  " movq %[rsi], %%r9\n\t"
506  " movq %[rdx], %%r10\n\t"
507  " xorps %%xmm6, %%xmm6 # zero accumulators\n\t"
508  " xorps %%xmm7, %%xmm7 # zero accumulators\n\t"
509  " shr $5, %%rax # rax = n_2_ccomplex_blocks / 2\n\t"
510  " shr $4, %%r8\n\t"
511  " xorps %%xmm8, %%xmm2\n\t"
512  " jmp .%=L1_test\n\t"
513  " # 4 taps / loop\n\t"
514  " # something like ?? cycles / loop\n\t"
515  ".%=Loop1: \n\t"
516  "# complex prod: C += A * B, w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t"
517  "# movaps (%%r9), %%xmmA\n\t"
518  "# movaps (%%r10), %%xmmB\n\t"
519  "# movaps %%xmmA, %%xmmZ\n\t"
520  "# shufps $0xb1, %%xmmZ, %%xmmZ # swap internals\n\t"
521  "# mulps %%xmmB, %%xmmA\n\t"
522  "# mulps %%xmmZ, %%xmmB\n\t"
523  "# # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t"
524  "# xorps %%xmmPN, %%xmmA\n\t"
525  "# movaps %%xmmA, %%xmmZ\n\t"
526  "# unpcklps %%xmmB, %%xmmA\n\t"
527  "# unpckhps %%xmmB, %%xmmZ\n\t"
528  "# movaps %%xmmZ, %%xmmY\n\t"
529  "# shufps $0x44, %%xmmA, %%xmmZ # b01000100\n\t"
530  "# shufps $0xee, %%xmmY, %%xmmA # b11101110\n\t"
531  "# addps %%xmmZ, %%xmmA\n\t"
532  "# addps %%xmmA, %%xmmC\n\t"
533  "# A=xmm0, B=xmm2, Z=xmm4\n\t"
534  "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t"
535  " movaps 0(%%r9), %%xmm0\n\t"
536  " movaps 16(%%r9), %%xmm1\n\t"
537  " movaps %%xmm0, %%xmm4\n\t"
538  " movaps 0(%%r10), %%xmm2\n\t"
539  " xorps %%xmm8, %%xmm2\n\t"
540  " mulps %%xmm2, %%xmm0\n\t"
541  " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t"
542  " movaps 16(%%r10), %%xmm3\n\t"
543  " movaps %%xmm1, %%xmm5\n\t"
544  " xorps %%xmm8, %%xmm3\n\t"
545  " addps %%xmm0, %%xmm6\n\t"
546  " mulps %%xmm3, %%xmm1\n\t"
547  " shufps $0xb1, %%xmm5, %%xmm5 # swap internals\n\t"
548  " addps %%xmm1, %%xmm6\n\t"
549  " mulps %%xmm4, %%xmm2\n\t"
550  " addps %%xmm2, %%xmm7\n\t"
551  " mulps %%xmm5, %%xmm3\n\t"
552  " add $32, %%r9\n\t"
553  " addps %%xmm3, %%xmm7\n\t"
554  " add $32, %%r10\n\t"
555  ".%=L1_test:\n\t"
556  " dec %%rax\n\t"
557  " jge .%=Loop1\n\t"
558  " # We've handled the bulk of multiplies up to here.\n\t"
559  " # Let's sse if original n_2_ccomplex_blocks was odd.\n\t"
560  " # If so, we've got 2 more taps to do.\n\t"
561  " and $1, %%r8\n\t"
562  " je .%=Leven\n\t"
563  " # The count was odd, do 2 more taps.\n\t"
564  " # Note that we've already got mm0/mm2 preloaded\n\t"
565  " # from the main loop.\n\t"
566  " movaps 0(%%r9), %%xmm0\n\t"
567  " movaps %%xmm0, %%xmm4\n\t"
568  " movaps 0(%%r10), %%xmm2\n\t"
569  " xorps %%xmm8, %%xmm2\n\t"
570  " mulps %%xmm2, %%xmm0\n\t"
571  " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t"
572  " addps %%xmm0, %%xmm6\n\t"
573  " mulps %%xmm4, %%xmm2\n\t"
574  " addps %%xmm2, %%xmm7\n\t"
575  ".%=Leven:\n\t"
576  " # neg inversor\n\t"
577  " xorps %%xmm1, %%xmm1\n\t"
578  " mov $0x80000000, %%r9\n\t"
579  " movd %%r9, %%xmm1\n\t"
580  " shufps $0x11, %%xmm1, %%xmm1 # b00010001 # 0 -0 0 -0\n\t"
581  " # pfpnacc\n\t"
582  " xorps %%xmm1, %%xmm6\n\t"
583  " movaps %%xmm6, %%xmm2\n\t"
584  " unpcklps %%xmm7, %%xmm6\n\t"
585  " unpckhps %%xmm7, %%xmm2\n\t"
586  " movaps %%xmm2, %%xmm3\n\t"
587  " shufps $0x44, %%xmm6, %%xmm2 # b01000100\n\t"
588  " shufps $0xee, %%xmm3, %%xmm6 # b11101110\n\t"
589  " addps %%xmm2, %%xmm6\n\t"
590  " # xmm6 = r1 i2 r3 i4\n\t"
591  " movhlps %%xmm6, %%xmm4 # xmm4 = r3 i4 ?? ??\n\t"
592  " addps %%xmm4, %%xmm6 # xmm6 = r1+r3 i2+i4 ?? ??\n\t"
593  " movlps %%xmm6, (%[rdi]) # store low 2x32 bits (complex) "
594  "to memory\n\t"
595  :
596  : [rsi] "r"(input),
597  [rdx] "r"(taps),
598  "c"(num_bytes),
599  [rdi] "r"(result),
600  [conjugator] "r"(conjugator)
601  : "rax", "r8", "r9", "r10");
602 
603  int getem = num_bytes % 16;
604 
605  for (; getem > 0; getem -= 8) {
606  *result += (input[(num_bytes >> 3) - 1] * lv_conj(taps[(num_bytes >> 3) - 1]));
607  }
608 }
609 #endif
610 
611 #if LV_HAVE_SSE && LV_HAVE_32
612 static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_sse_32(lv_32fc_t* result,
613  const lv_32fc_t* input,
614  const lv_32fc_t* taps,
615  unsigned int num_points)
616 {
617 
618  const unsigned int num_bytes = num_points * 8;
619 
621  static const uint32_t conjugator[4] = {
622  0x00000000, 0x80000000, 0x00000000, 0x80000000
623  };
624 
625  int bound = num_bytes >> 4;
626  int leftovers = num_bytes % 16;
627 
629  " #pushl %%ebp\n\t"
630  " #movl %%esp, %%ebp\n\t"
631  " #movl 12(%%ebp), %%eax # input\n\t"
632  " #movl 16(%%ebp), %%edx # taps\n\t"
633  " #movl 20(%%ebp), %%ecx # n_bytes\n\t"
634  " movaps 0(%[conjugator]), %%xmm1\n\t"
635  " xorps %%xmm6, %%xmm6 # zero accumulators\n\t"
636  " movaps 0(%[eax]), %%xmm0\n\t"
637  " xorps %%xmm7, %%xmm7 # zero accumulators\n\t"
638  " movaps 0(%[edx]), %%xmm2\n\t"
639  " movl %[ecx], (%[out])\n\t"
640  " shrl $5, %[ecx] # ecx = n_2_ccomplex_blocks / 2\n\t"
641 
642  " xorps %%xmm1, %%xmm2\n\t"
643  " jmp .%=L1_test\n\t"
644  " # 4 taps / loop\n\t"
645  " # something like ?? cycles / loop\n\t"
646  ".%=Loop1: \n\t"
647  "# complex prod: C += A * B, w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t"
648  "# movaps (%[eax]), %%xmmA\n\t"
649  "# movaps (%[edx]), %%xmmB\n\t"
650  "# movaps %%xmmA, %%xmmZ\n\t"
651  "# shufps $0xb1, %%xmmZ, %%xmmZ # swap internals\n\t"
652  "# mulps %%xmmB, %%xmmA\n\t"
653  "# mulps %%xmmZ, %%xmmB\n\t"
654  "# # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t"
655  "# xorps %%xmmPN, %%xmmA\n\t"
656  "# movaps %%xmmA, %%xmmZ\n\t"
657  "# unpcklps %%xmmB, %%xmmA\n\t"
658  "# unpckhps %%xmmB, %%xmmZ\n\t"
659  "# movaps %%xmmZ, %%xmmY\n\t"
660  "# shufps $0x44, %%xmmA, %%xmmZ # b01000100\n\t"
661  "# shufps $0xee, %%xmmY, %%xmmA # b11101110\n\t"
662  "# addps %%xmmZ, %%xmmA\n\t"
663  "# addps %%xmmA, %%xmmC\n\t"
664  "# A=xmm0, B=xmm2, Z=xmm4\n\t"
665  "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t"
666  " movaps 16(%[edx]), %%xmm3\n\t"
667  " movaps %%xmm0, %%xmm4\n\t"
668  " xorps %%xmm1, %%xmm3\n\t"
669  " mulps %%xmm2, %%xmm0\n\t"
670  " movaps 16(%[eax]), %%xmm1\n\t"
671  " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t"
672  " movaps %%xmm1, %%xmm5\n\t"
673  " addps %%xmm0, %%xmm6\n\t"
674  " mulps %%xmm3, %%xmm1\n\t"
675  " shufps $0xb1, %%xmm5, %%xmm5 # swap internals\n\t"
676  " addps %%xmm1, %%xmm6\n\t"
677  " movaps 0(%[conjugator]), %%xmm1\n\t"
678  " mulps %%xmm4, %%xmm2\n\t"
679  " movaps 32(%[eax]), %%xmm0\n\t"
680  " addps %%xmm2, %%xmm7\n\t"
681  " mulps %%xmm5, %%xmm3\n\t"
682  " addl $32, %[eax]\n\t"
683  " movaps 32(%[edx]), %%xmm2\n\t"
684  " addps %%xmm3, %%xmm7\n\t"
685  " xorps %%xmm1, %%xmm2\n\t"
686  " addl $32, %[edx]\n\t"
687  ".%=L1_test:\n\t"
688  " decl %[ecx]\n\t"
689  " jge .%=Loop1\n\t"
690  " # We've handled the bulk of multiplies up to here.\n\t"
691  " # Let's sse if original n_2_ccomplex_blocks was odd.\n\t"
692  " # If so, we've got 2 more taps to do.\n\t"
693  " movl 0(%[out]), %[ecx] # n_2_ccomplex_blocks\n\t"
694  " shrl $4, %[ecx]\n\t"
695  " andl $1, %[ecx]\n\t"
696  " je .%=Leven\n\t"
697  " # The count was odd, do 2 more taps.\n\t"
698  " # Note that we've already got mm0/mm2 preloaded\n\t"
699  " # from the main loop.\n\t"
700  " movaps %%xmm0, %%xmm4\n\t"
701  " mulps %%xmm2, %%xmm0\n\t"
702  " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t"
703  " addps %%xmm0, %%xmm6\n\t"
704  " mulps %%xmm4, %%xmm2\n\t"
705  " addps %%xmm2, %%xmm7\n\t"
706  ".%=Leven:\n\t"
707  " # neg inversor\n\t"
708  " #movl 8(%%ebp), %[eax] \n\t"
709  " xorps %%xmm1, %%xmm1\n\t"
710  " movl $0x80000000, (%[out])\n\t"
711  " movss (%[out]), %%xmm1\n\t"
712  " shufps $0x11, %%xmm1, %%xmm1 # b00010001 # 0 -0 0 -0\n\t"
713  " # pfpnacc\n\t"
714  " xorps %%xmm1, %%xmm6\n\t"
715  " movaps %%xmm6, %%xmm2\n\t"
716  " unpcklps %%xmm7, %%xmm6\n\t"
717  " unpckhps %%xmm7, %%xmm2\n\t"
718  " movaps %%xmm2, %%xmm3\n\t"
719  " shufps $0x44, %%xmm6, %%xmm2 # b01000100\n\t"
720  " shufps $0xee, %%xmm3, %%xmm6 # b11101110\n\t"
721  " addps %%xmm2, %%xmm6\n\t"
722  " # xmm6 = r1 i2 r3 i4\n\t"
723  " #movl 8(%%ebp), %[eax] # @result\n\t"
724  " movhlps %%xmm6, %%xmm4 # xmm4 = r3 i4 ?? ??\n\t"
725  " addps %%xmm4, %%xmm6 # xmm6 = r1+r3 i2+i4 ?? ??\n\t"
726  " movlps %%xmm6, (%[out]) # store low 2x32 bits (complex) "
727  "to memory\n\t"
728  " #popl %%ebp\n\t"
729  :
730  : [eax] "r"(input),
731  [edx] "r"(taps),
732  [ecx] "r"(num_bytes),
733  [out] "r"(result),
734  [conjugator] "r"(conjugator));
735 
736  for (; leftovers > 0; leftovers -= 8) {
737  *result += (input[(bound << 1)] * lv_conj(taps[(bound << 1)]));
738  }
739 }
740 #endif /*LV_HAVE_SSE*/
741 
742 
743 #endif /*INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_a_H*/
FORCE_INLINE __m128 _mm_movehdup_ps(__m128 a)
Definition: sse2neon.h:6611
float32x4_t __m128
Definition: sse2neon.h:235
FORCE_INLINE __m128 _mm_addsub_ps(__m128 a, __m128 b)
Definition: sse2neon.h:6496
#define _mm_shuffle_ps(a, b, imm)
Definition: sse2neon.h:2586
FORCE_INLINE __m128 _mm_moveldup_ps(__m128 a)
Definition: sse2neon.h:6627
FORCE_INLINE __m128 _mm_mul_ps(__m128 a, __m128 b)
Definition: sse2neon.h:2205
FORCE_INLINE void _mm_storel_pi(__m64 *p, __m128 a)
Definition: sse2neon.h:2763
FORCE_INLINE __m128 _mm_loadu_ps(const float *p)
Definition: sse2neon.h:1941
FORCE_INLINE __m128 _mm_setzero_ps(void)
Definition: sse2neon.h:2531
int64x1_t __m64
Definition: sse2neon.h:234
FORCE_INLINE __m128 _mm_add_ps(__m128 a, __m128 b)
Definition: sse2neon.h:1039
#define _MM_SHUFFLE(fp3, fp2, fp1, fp0)
Definition: sse2neon.h:195
FORCE_INLINE __m128 _mm_load_ps(const float *p)
Definition: sse2neon.h:1858
static void volk_32fc_x2_conjugate_dot_prod_32fc_a_sse3(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:370
static void volk_32fc_x2_conjugate_dot_prod_32fc_a_generic(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:428
static void volk_32fc_x2_conjugate_dot_prod_32fc_a_avx(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:309
static void volk_32fc_x2_conjugate_dot_prod_32fc_generic(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:70
static void volk_32fc_x2_conjugate_dot_prod_32fc_u_avx(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:127
static void volk_32fc_x2_conjugate_dot_prod_32fc_block(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:86
static void volk_32fc_x2_conjugate_dot_prod_32fc_u_sse3(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:189
static void volk_32fc_x2_conjugate_dot_prod_32fc_neon(lv_32fc_t *result, const lv_32fc_t *input, const lv_32fc_t *taps, unsigned int num_points)
Definition: volk_32fc_x2_conjugate_dot_prod_32fc.h:245
#define __VOLK_VOLATILE
Definition: volk_common.h:73
#define __VOLK_PREFETCH(addr)
Definition: volk_common.h:71
#define __VOLK_ASM
Definition: volk_common.h:72
#define __VOLK_ATTR_ALIGNED(x)
Definition: volk_common.h:65
#define lv_cimag(x)
Definition: volk_complex.h:98
#define lv_conj(x)
Definition: volk_complex.h:100
#define lv_cmake(r, i)
Definition: volk_complex.h:77
#define lv_creal(x)
Definition: volk_complex.h:96
float complex lv_32fc_t
Definition: volk_complex.h:74
for i
Definition: volk_config_fixed.tmpl.h:13